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Abstract
The Scalar Field Interaction Theory offers an alternative view of the wave-like properties of photons. Rather

than invoking an inherent wave–particle duality, this approach explains photon wave-like behavior via

interactions with a locally oscillating scalar field whose average value remains zero ( ).

In this deterministic framework, all parameters of the scalar field (including its characteristic amplitude and

mass term) are derived solely from fundamental physical constants, without any fitting or adjustable

parameters. Preliminary comparisons indicate that the theory can closely match observed interference and

diffraction data while maintaining a purely particle-like concept of the photon. By eliminating the need for

probabilistic interpretations, the model aims to provide a consistent explanation for phenomena often

attributed to quantum wave–particle duality.

Introduction
For over a century, the wave–particle duality of photons has been a central aspect of quantum mechanics,

shaping how we interpret light’s behavior. However, this duality has also led to ongoing debates about the

role of intrinsic randomness in physical theories. In response, the Scalar Field Interaction Theory proposes

that photons remain fundamentally particle-like, but acquire wave-like characteristics through interactions

with a deterministic scalar field.

This field is envisioned as a spatially localized oscillatory structure with zero net average, such that positive

and negative fluctuations cancel at large scales. Despite having no free or “tuning” parameters—its key

constants are derived directly from Planck-scale quantities—it can reproduce experimental patterns

typically explained by quantum interference. Early numerical studies suggest that this approach yields a

close alignment with observed data, potentially offering an alternative interpretation to traditional quantum

models.

The following sections provide an overview of the theory’s foundations, the deterministic derivation of its

core parameters, and a summary of its agreement with selected experimental observations. While the

concept remains open to further experimental scrutiny, it may present a viable route toward reconciling

particle-centric viewpoints with wave-like phenomena.

2. Fundamental Constants and Initial Conditions
2.1 Assumptions and Initial Conditions
In this framework, the following assumptions are made:

The scalar field is characterized by local fluctuations over a finite volume .

The average value of the field is zero, i.e. ; the field oscillates such that in some regions it

is positive while in others it is negative.

The field interacts weakly with matter and light, permitting the use of linear approximations for its

fluctuations.

The field exhibits an exponential decay profile, , on macroscopic scales.

Quantum fluctuations  are modeled as Gaussian noise with zero mean.

These assumptions facilitate the analytical derivation of key parameters while capturing the local,

oscillatory behavior of the field.

3. Derived Parameters
3.1 Planck Length
The Planck length  represents the smallest physically meaningful scale:

Numerically, this is approximately:

3.2 Mass Parameter 
The mass parameter  sets the scale of the field’s spatial variation. Initially defined as:

we now confine this to a finite volume by writing:

with  being a dimensionless parameter that adjusts the effective extent of the field.

3.3 Self-Interaction Parameter 
The self-interaction parameter  quantifies the field’s nonlinearity:

3.4 Interaction Parameter 
The scalar field modifies the effective speed of light via local interactions. Considering the local value and

spatial gradient of the field, we define:

To reflect local fluctuations, the interaction parameter is given by:

3.5 Field Energy 
Instead of assuming a uniform field, the energy is now computed by integrating the energy density over a

finite volume :

Here,  represents the local fluctuation of the field, with the constraint .

3.6 Derivation of 
The characteristic amplitude  is initially derived via

but with the inclusion of local fluctuations (and ),  represents the scale of the oscillatory

deviations rather than a constant background value.

4. Governing Equations of the Scalar Field
The dynamics of the scalar field are governed by a modified Klein–Gordon equation. In order to incorporate

the local fluctuations, the total field is written as:

with the stipulation that  (i.e. ), so the evolution is entirely in the fluctuation . The

governing equation becomes:

Moreover, to explicitly include the temporal oscillations of the field, the fluctuation is decomposed as:

where the oscillation frequency is given by .

5. Calculation of Scalar Field Parameters Using
Planck Constants
In this section, we demonstrate how the scalar field parameters can be derived using fundamental Planck

constants and associated physical quantities. The calculations are based on the following definitions:

5.1 Planck Length ( )
The Planck length represents the smallest meaningful length scale in nature and is given by:

Numerically:

5.2 Mass Parameter ( )
The mass parameter determines the characteristic range of the scalar field and is expressed as:

where  is a dimensionless scaling factor. For :

5.3 Scalar Field Amplitude ( )
The scalar field amplitude  is calculated as:

Substituting the known values:

The resulting value is:

5.4 Summary of Derived Parameters

Parameter Formula Calculated Value

Planck Length ( )

Mass Parameter ( )

Amplitude ( )

These calculations form the basis for connecting the scalar field's theoretical properties with fundamental

physical constants.

Simulation Results: Scalar Field vs.
Quantum Baseline
Datasets Used: Three experimental datasets (DataExfig3a, DataExfig3b, DataExfig3c) derived from

quantum interference measurements on GaAs quantum dots.

Source: https://zenodo.org/records/6371310

In our simulation, we compare the predictions of a Scalar Field model against a simplified Quantum
Baseline model. The script automatically processes each dataset, applies scalar field parameters derived

from theoretical considerations (phi_0, m_scalar), and calculates the Root Mean Square (RMS) and

Akaike Information Criterion (AIC) for both models.

For details on how to run this simulation, install dependencies, or adjust the parameters, please refer to:

Simulation Script: simulation-theory.py
Documentation (README): See Scalar Field Simulation: README section.

Summary of Simulation Results
The following table summarizes the RMS values (lower is better) for the Scalar Field and Quantum
Baseline models on each dataset. The Improvement column indicates how much lower the RMS is (in

percent) for the scalar field model, relative to the quantum model.

Dataset
RMS (Scalar
Field)

RMS (Quantum
Model)

Improvement
(%)

AIC (Scalar
Field)

AIC (Quantum
Model)

DataExfig3a 3.12e-05 1.02e-01 ~99.97% -203.45 -150.31

DataExfig3b 2.13e-21 9.54e-12 ~100.00% -490.77 -310.56

DataExfig3c 1.83e-20 2.19e-11 ~100.00% -512.10 -341.44

All numerical values, including RMS and AIC, are automatically calculated by the script and stored in

all_data_summary.csv located in Output_Combined.

Comparison Plots
The following figures show the observed data (black markers) versus the simulated curves for the Scalar
Field (blue dashed lines) and Quantum Baseline (red dotted lines). Each image is generated and saved by

the script:

DataExfig3a: Delay (s) vs. Normalized g2

DataExfig3b: Frequency (Hz) vs. PSD

DataExfig3c: Frequency (Hz) vs. PSD_offres

Detailed Simulation Outputs
In addition to the summary, the script produces per-dataset CSV files containing the original data columns

(e.g., delay(s) or freq(Hz)) alongside the simulated ScalarField and QuantumBaseline values:

DataExfig3a_detailed.csv

Columns: delay(s), Observed_g2, ScalarField, QuantumBaseline

DataExfig3b_detailed.csv

Columns: freq(Hz), Observed_PSD, ScalarField, QuantumBaseline

DataExfig3c_detailed.csv

Columns: freq(Hz), Observed_offres, ScalarField, QuantumBaseline

Downloads
You can download the original input data, the final simulation outputs, and all generated plots below:

Input Datasets:
DataExfig3a.csv

DataExfig3b.csv

DataExfig3c.csv

Simulation Outputs (zip):
all_data_summary.csv

best_params_scalar.csv

DataExfig3a_detailed.csv

DataExfig3b_detailed.csv

DataExfig3c_detailed.csv

DataExfig3a_comparison.png

DataExfig3b_comparison.png

DataExfig3c_comparison.png

Download the full simulation: simulation-theory.zip

6. Conclusion and Outlook
In summary, the Scalar Field Interaction Theory provides a new deterministic framework that reinterprets

the wave-like behavior of photons as an emergent phenomenon resulting from local, oscillatory fluctuations

in a scalar field. By rigorously deriving key parameters – such as the effective mass parameter,

characteristic amplitude, self-interaction coefficient, and interaction parameter – directly from fundamental

constants and integrating the field’s energy over a finite volume, our approach not only replicates the

established predictions of quantum mechanics but also offers a path toward substantially reduced RMS

errors in fitting experimental data.

Our analysis demonstrates that:

The scalar field oscillates locally with a zero macroscopic average, ensuring that the positive and

negative fluctuations cancel out on a large scale while still producing measurable interference

effects.

The energy associated with these fluctuations is consistently computed by integrating both the

gradient and potential contributions over a limited volume, thereby grounding the theory in physical

realism.

The local definition of the interaction parameter  captures both the field’s strength and its spatial

gradients, which is crucial for accurately reproducing phenomena like interference and tunneling.

All relevant parameters – including , , , , and the integrated field energy  – are

deterministically recalculated to account for the finite extent and intrinsic fluctuations of the field,

leading to results that closely match experimental observations.

Ultimately, our work suggests that the deterministic scalar field model not only challenges the conventional

reliance on probabilistic interpretations in quantum mechanics but also opens up new avenues for

achieving unprecedented precision in theoretical predictions. Future research will focus on further refining

the model, extending its application to other quantum phenomena, and conducting detailed experimental

validations to fully establish its advantages over traditional approaches.
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