Home

Deterministic Scalar Field Calculator

User Inputs

You can edit either φ0 or λ (the scaling parameter). Changing one automatically re‐derives the other via λ = √[(ħ·c)/G] / φ₀. All other derived constants update immediately.

Symbol Description Value
ħ (hbar) Reduced Planck constant J·s
c Speed of light m/s
G Gravitational constant m³·kg⁻¹·s⁻²
e Elementary charge C
me Electron mass kg
ε0 Vacuum permittivity F/m
φ0 Scalar field amplitude
λ Scaling parameter

All inputs OK. Derived constants updated below.

Derived Constants & Deviations

Constant Equation Computed
(sci)
Full Value
(non-sci)
Measured Deviation (%)
Gravitational constant G (theory)Gth=cλ2ϕ026.674300e-110.0000000000676.674300e-111.936487e-14
Planck length ℓPP=Gc31.616255e-350.0000000000001.616255e-351.480493e-6
Planck time tPtP=Pc5.391246e-440.0000000000005.391160e-441.603489e-3
Planck mass mPmP=cG2.176434e-80.0000000217642.176434e-81.571613e-5
Planck charge qPqP=4πε0c1.875546e-180.0000000000001.875546e-181.983693e-6
Fine-structure constant αα=e24πε0c7.297353e-30.0072973525747.297353e-36.097087e-8
Classical electron radius rere=e24πε0mec22.817940e-150.0000000000002.817940e-151.748940e-10
Electron Compton wavelength λcλc=hmec2.426310e-120.0000000000022.426310e-122.815353e-8
Scaling parameter λ (final)λ=cGϕ09.983644e+99983643770.8767299652101.000000e+101.635623e-1
Planck length / electron radius (ℓP / rₑ)Pre5.735590e-210.0000000000005.740000e-217.682999e-2

Done. λ = 9.9836e+9, φ0 = 2.1800e-18

G=cλ2ϕ02

with derived Planck mass: mP=λϕ0


Gravitational Constant Calculator

G=cλ2ϕ02

with derived Planck mass: mP=λϕ0

(and ϕ0=mPλ gives ϕ02.18×1018)

Adjust the inputs below. All constants used in the calculation are tunable.

ϕ0=mPλ=2.18×1081.0×1010=2.18×1018

λ=mPϕ0=2.18×1082.18×1018=9.98364277087673×109

Derived Planck Mass (mₚ): 2.176e-8 kg

Calculated G: 6.674e-11 m³/(kg·s²)

Deviation from measured value: -0.00 %

Deterministic Derivation of the Gravitational Constant

This calculator elegantly demonstrates how the gravitational constant G can be derived purely deterministically – without any tuning parameters. All the values, including the scaling parameter λ and the scalar field amplitude ϕ0, are computed directly from fixed equations.

In our model, the relation ϕ0=mPλ (with mP representing the Planck mass) automatically yields G=cλ2ϕ02.

With mP2.18×108 kg and λ1.0×1010, the scalar field amplitude is fixed to ϕ02.18×1018. This deterministic approach shows that the fundamental constants are not arbitrarily adjustable but instead emerge naturally from the intrinsic structure of the scalar field.